

Nucleation of molecular crystals

Philipp Ectors ¹, Jamshed Anwar ², Dirk Zahn ¹

Chair of Theoretical Chemistry / Computer Chemistry Center

University of Erlangen-Nürnberg¹.
Department of Chemistry, Lancaster University²

We investigate the early stages of molecular crystal nucleation by means of a combined Monte-Carlo/molecular dynamics simulation approach. Along this line, the time scales for solute migration to the aggregate are efficiently bridged, whilst detailed simulated annealing is applied to aggregate relaxation.

Starting from a dimer, the Kawska-Zahn method allows the investigation of the mechanisms of molecule-by-molecule association, the formation of pre-nucleation clusters, nucleation and aggregate growth [1].

Here, we demonstrate this approach for two molecular species, i.e. D/L - norleucine and benzamide. While the polymorphism of the former has been thoroughly explored by Anwar et al [2], dispersion-corrected density functional calculations are used to rationalize the subtle energy differences in the most important polymorph structures of benzamide.

On the basis of this in-depth understanding we suggest nucleation scenarios as guide to synthesis [3,4,5].

The pictures illustrate the early stages of D/L - norleucine molecule association (left) and the transition (middle) to later stages of aggregate growth with reflect the formation of layered structures (right).

- [1] A.Kawska, J.Brickmann, R.Kniep, O.Hochrein, D.Zahn, *J. Chem. Phys.*, **2006**, 124, 24513.
- [2] Sigrid C. Tuble, Jamshed Anwar, and Julian D. Gale , *J. Am. Chem. Soc.* , **2004**, 126, 396 - 405
- [3] P. Ectors, D. Zahn, *Phys. Chem. Chem. Phys.*, **2013**, 15, 9219
- [4] P. Ectors, D. Ectors, D. Zahn, *Mol. Simul.*, **2013**, DOI:10.1080/08927022.2013.794274
- [5] Christian Butterhof, Thomas Martin, Phillip Ectors, Dirk Zahn, Paul Niemietz, Jürgen Senker, Christian Näther, Josef Breu; *Cryst.Growth Des.*, **2012**, 12, 5365-5372